Sketch inference as a theory of visual contour computation

Jonas August

Robotics Institute Carnegie Mellon University

Acknowledgements

- Steve Zucker (advisor at Yale)
- Nick Hengartner (LANL, Yale)
- Vladimir Rokhlin (Yale)
- David Mumford (Brown)
- Lance Williams (UNM)
- Karvel Thornber (NEC)
- Takeo Kanade (CMU)

Application:Sketch Enhancement

Application: Reducing Fluoroscopic Exposures

[Viergever et al]

Application:

Finding Roads and Rivers in Satellite Imagery

Images with Contours

Local edge & line measurements

Original (No corruption) With Blur and Noise

CIRF

Original (No corruption) With Blur and Noise

$$\sigma = 1$$

$$\sigma = 1$$
 $\sigma = 1.5$ $\sigma = 2$

$$\sigma = 2$$

Goal: Sketch Inference

Fusion of Differential Geometry and Random Fields by Eliminating Curve Parameterization

Goal: Sketch Inference

Fusion of Differential Geometry and Random Fields by Eliminating Curve Parameterization

Outline

- Background
- Direction Process
- The Curve Indicator Random Field + All Cumulants
- Empirical Edge Statistics

• Curvature Process and Euler Spirals

• Volterra Filters and Partial Differential Equations for Enhancing Curve Images

Inference for a Single Contour

• Dynamic programming [Montanari '71; Sha'ashu & Ullman '88]

• Heuristic search [Martelli '76]

• Bayesian [Geman & Jedynak '96, Yuille & Coughlan '00]

Inference for Multiple Contours

- Local edge detection + linking (non-contextual)
- Context via **local interactions**:
 - MRFs [Geman & Geman; Marroquin]
 - Energy-based [Mumford& Shah, Nitzberg et al, Williams]
 - Dictionary-based relaxation labeling [Hancock et al]
 - Relaxation labeling with co-circularity [Zucker,Parent,Iverson]
- Explicit parameterizations and MCMC simulation [Zhu et al]

Images with Contours

Inferring a Sketch

 $U_i=$ underlying random field (ideal sketch) ("indicates" curve at $i=(x,y,\theta)$)

 $M_i=$ measurement random field (corrupted form of U_i , i.e., from local edge operator, e.g. image gradient)

Inferring a Sketch

 $U_i = \text{underlying random field (ideal sketch)}$ ("indicates" curve at $i = (x, y, \theta)$)

 $M_i=$ measurement random field (corrupted form of U_i , i.e., from local edge operator, e.g. image gradient)

Goal: Estimate U_i given M_i .

Inferring a Sketch

 $U_i = \text{underlying random field (ideal sketch)}$ ("indicates" curve at $i = (x, y, \theta)$)

 $M_i=$ measurement random field (corrupted form of U_i , i.e., from local edge operator, e.g. image gradient)

Goal: Estimate U_i given M_i .

Posterior: $\mathbb{P}(U|M) \propto \mathbb{P}(M|U)\mathbb{P}(U)$

Likelihood $\mathbb{P}(M|U)$: corruption model (noise and blur)

Prior probability $\mathbb{P}(U)$ "bias" to overcome uncertainty What's a prior for sketches?

Filtering

Linear Filters: Model: M = blur(U) + noise

Linear minimum mean square error estimate: Requires $second\ moments$ of U.

Quadratic and Higher-Order Filters:

Require higher moments of U.

Where do the moments come from?

Approach to Sketch Inference

Eliminate curve parameterization by accumulating "ink"

Differential Geometry of Planar Curves

Curve with parameter $s \in \mathbb{R}$: $C: s \mapsto C(s) = (x(s), y(s)) \in \mathbb{R}^2$

$$C: s \mapsto C(s) = (x(s), y(s)) \in \mathbb{R}^2$$

Tangent vector = $T = \frac{C'}{||C'||}$, where $C' = (\frac{dx}{ds}, \frac{dy}{ds})$

Normal vector = $N = \text{rotate}_{90^{\circ}}T$

Direction = θ : $T = (\cos \theta, \sin \theta)$

Curvature $\kappa = \frac{d\theta}{ds}$

A Markov Process with Direction

Lift of curve: $t \mapsto R_t = (x, y, \theta)$

A Markov Process with Direction

Lift of curve: $t \mapsto R_t = (x, y, \theta)$

Mumford's process with *direction*:

$$\dot{x} = \cos \theta$$
 $\dot{y} = \sin \theta$ $\dot{\theta} = \text{noise}$

Developed by Williams, Jacobs, Thornber, Zweck.

Green's function $G = (g_{ij})$

Approximate continuous space discretely:
$$i = (x, y, \theta)$$

$$g_{ij} = \begin{cases} \text{time spent in } j \\ \text{given process} \\ \text{started in } i \end{cases}$$

Curve Indicator Random Field

Discrete-space Markov process $R_t = i = (x, y, \theta), \quad t \in [0, L]$ Random length $L \sim \text{exponential}(\alpha^{-1})$

Key intuition: Let $V_i \approx \left\{ \begin{array}{l} 1, & \text{if } i \text{ is on the curve} \\ 0, & \text{otherwise} \end{array} \right.$

Curve Indicator Random Field

Discrete-space Markov process $R_t = i = (x, y, \theta), \quad t \in [0, L]$ Random length $L \sim \text{exponential}(\alpha^{-1})$

Key intuition: Let $V_i \approx \left\{ egin{array}{ll} 1, & \mbox{if i is on the curve} \\ 0, & \mbox{otherwise} \end{array} \right.$

$$\mathbf{1}\{\text{condition}\} = \left\{ \begin{array}{l} 1, & \text{if } condition \text{ true} \\ 0, & \text{otherwise} \end{array} \right.$$

Definition: Curve indicator random field (1 curve):

$$V_i := \int_0^L \mathbf{1}\{R_t = i\}dt$$

= time spent by curve at position $i = (x, y, \theta)$

Curve Interactions

How are crossings represented?

Using parameterization:

- must check all t_1, t_2 whether $R_{t_1} = R_{t_2}$
- global computation

Using CIRF:

- ink buildup occurs at crossings
- local computation: U_i^2

Theoretical Result:

All Joint Moments of the Curve Indicator Random Field

Claim (Single curve case):

Positions
$$i_1,\ldots,i_k\in\{(x,y,\theta)\}$$

$$\mathbb{E}[V_{i_1}\cdots V_{i_k}]\propto\sum g_{j_1j_2}\cdots g_{j_{k-1}j_k}$$
 Sum over permutations j_1,\cdots,j_k of i_1,\cdots,i_k

$$g_{ij} = \begin{cases} \text{time spent in } j \\ \text{given process} \\ \text{started in } i \end{cases}$$

Sum over all moments gives Feynman-Kac formula.

A Sketch with Multiple Curves

Random number \mathcal{N} of i.i.d. Markov processes $R_t^{(1)}, \dots, R_t^{(\mathcal{N})} \sim R_t$ Independent random lengths $L_1, \dots, L_{\mathcal{N}} \sim L$

Take superposition of i.i.d. 1-curve CIRFs:

Definition: Curve indicator random field (multiple curves):

$$U_i := \sum_{n=1}^{N} \int_0^L \mathbf{1} \{R_t^{(n)} = i\} dt$$

Claim: cumulant $\{U_{i_1},\ldots,U_{i_k}\}\propto\sum g_{j_1j_2}\cdots g_{j_{k-1}j_k}$ Sum over permutations j_1,\cdots,j_k of positions i_1,\cdots,i_k

Corollary: The curve indicator random field is non-Gaussian.

Covariance of Curve Indicator Random Field

(Integrated over θ for display)

Covariance of Curve Indicator Random Field

$$\theta = 45^{\circ}$$

$$t \mapsto R_t = (x, y, \theta)$$

$$\theta = 0^{\circ}$$

$$\theta = -22.5^{\circ}$$

"Ideal" edge correlations with horizontal edge at center:

$$\theta = -45^{\circ}$$

Original image

$$\theta = 22.5^{\circ}$$

Edge Correlations Observed in Images

$$\theta = 0^{\circ}$$

$$\theta = -22.5^{\circ}$$

The Need for Curvature

Edge correlations (integrated over θ)

The Benefit of Curvature

Curvature "tunes" search window

A Markov Process with Curvature

Lift with curvature: $t \mapsto R_t = (x, y, \theta, \kappa)(t)$

Brownian motion in curvature:

$$\dot{x} = \cos \theta$$
 $\dot{y} = \sin \theta$ $\dot{\theta} = \kappa$ $\dot{\kappa} = \text{noise}$

Most probable curve minimizes: $\alpha \int \dot{\kappa}^2 + \beta \int dt \quad \leftrightarrow \quad$ Euler spiral

Fokker-Plank diffusion: $\frac{\partial p}{\partial t} = Qp$, where $Q := \frac{\sigma^2}{2} \frac{\partial^2}{\partial \kappa^2} - \cos \theta \frac{\partial}{\partial x} - \sin \theta \frac{\partial}{\partial y} - \kappa \frac{\partial}{\partial \theta} - \alpha$ Q: "killed" Markov process "generator"

A Markov Process with Curvature

Lift with curvature: $t \mapsto R_t = (x, y, \theta, \kappa)(t)$

Brownian motion in curvature:

$$\dot{x} = \cos \theta$$
 $\dot{y} = \sin \theta$ $\dot{\theta} = \kappa$ $\dot{\kappa} = \text{noise}$

Most probable curve minimizes: $\alpha \int \dot{\kappa}^2 + \beta \int dt \quad \leftrightarrow \quad$ Euler spiral

Fokker-Plank diffusion: $\frac{\partial p}{\partial t} = Qp$, where $Q := \frac{\sigma^2}{2} \frac{\partial^2}{\partial \kappa^2} - \cos \theta \frac{\partial}{\partial x} - \sin \theta \frac{\partial}{\partial y} - \kappa \frac{\partial}{\partial \theta} - \alpha$ Q: "killed" Markov process "generator"

Compare to direction process [Mumford]:

$$\dot{x} = \cos \theta$$
 $\dot{y} = \sin \theta$ $\dot{\theta} = \text{noise}$

Most probable curve minimizes: $\alpha \int \kappa^2 + \beta \int dt \leftrightarrow \text{Elastica}$

Fokker-Plank diffusion: $\frac{\partial p}{\partial t} = Qp$, where $Q := \frac{\sigma^2}{2} \frac{\partial^2}{\partial \theta^2} - \cos \theta \frac{\partial}{\partial x} - \sin \theta \frac{\partial}{\partial y} - \alpha$

Sketches Compared

CIRF Samples With Direction Only

Sketches Compared

CIRF Samples With Direction Only

CIRF Samples Including Curvature

Curve Indicator Random Field Covariance with Curvature:

Moment Generating Functional

For (multi-curve) curve indicator random field U:

$$\mathbb{E} \exp(c, U) = \exp(\mu, \bar{\mathcal{N}}(G(c) - G)\nu),$$

where:

Q = killed Markov process generator (e.g., direction or curvature process)

 $G = -Q^{-1} = Green's function$

 $G(c) = -(Q + \operatorname{diag} c)^{-1} = \text{Green's function biased by } c$

 μ = initial weighting

 ν = final weighting

 $\bar{\mathcal{N}}$ = average number of curves

Observe: Linear system.

Minimum Mean-Square Estimation of the CIRF

Bayes estimate: $\widetilde{u}(m) = \arg\min_u \mathbb{E}[\log s(U,u)|m]$ $U = \text{CIRF}, \quad m = \text{measurements}, \quad \log s = \text{mean-square error}.$

Minimum Mean-Square Estimation of the CIRF

Bayes estimate: $\tilde{u}(m) = \arg\min_{u} \mathbb{E}[\log s(U, u) | m]$ $U = \text{CIRF}, \qquad m = \text{measurements}, \qquad \text{loss} = \text{mean-square error}.$

Goal:

Filter Output = Minimum mean square error estimate (MMSE) of U

= Posterior mean of CIRF U (given measurements m)

Likelihood:

Assume Gaussian white noise, blur B, Poisson number of curves.

High-noise MMSE CIRF Volterra Filters

Assume no blur and white Gaussian noise, variance $\sigma_N^2 = \epsilon^{-1}$. High-noise limit: Take Taylor expansion of log normalizing constant of posterior around $\epsilon = 0$. ($\zeta = \text{constant}$)

Low contour density η assumption.

$$\tilde{u}^{(1)} = \eta \{1 - 2\epsilon\zeta + \epsilon(Gm + G^*m)\}$$

$$\tilde{u}^{(2)} = \eta \{ 1 - 2\epsilon \zeta + 3\epsilon^2 \zeta^2 + \epsilon (1 - 2\epsilon \zeta) (Gm + G^*m) + \epsilon^2 (G \operatorname{diag} m Gm + Gm \odot G^*m + G^* \operatorname{diag} m G^*m) \}$$

$$\tilde{u}^{(3)} = \eta \{ 1 - 2\epsilon\zeta + 3\epsilon^2\zeta^2 - 4\epsilon^3\zeta^3 + \epsilon(1 - 2\epsilon\zeta + 3\epsilon^2\zeta^2)(Gm + G^*m) + \epsilon^2(1 - 2\epsilon\zeta)(G \operatorname{diag} m \, Gm + Gm \odot G^*m + G^* \operatorname{diag} m \, G^*m) + \epsilon^3(G \operatorname{diag} m \, G \operatorname{diag} m \, Gm + G \operatorname{diag} m \, Gm \odot G^*m + Gm \odot G^* \operatorname{diag} m \, G^*m + G^* \operatorname{diag} m \, G^* \operatorname{diag} m \, G^*m) \}$$

Self-Avoiding Curves

- Derivation based on diagrams similar to Feynman diagrams

- Many diagrams produce negligible terms due to self-avoidance

MMSE CIRF Filtering via Nonlinear PDEs

Assume Gaussian white noise, blur B, Poisson number of curves.

Goal:

Filter Output = Posterior mean of CIRF U (given measurements M)

Exact prior + approximate likelihood

→ biased CIRF approximation of posterior mean:

$$(Q+\operatorname{diag} d)\,f=\operatorname{const}$$
 Forward PDE $(Q^*+\operatorname{diag} d)\,b=\operatorname{const}$ Backward PDE $d=\epsilon B^*(M-B(f\odot b))$ Filter $\operatorname{Output}_i=f_i\,b_i\approx \mathbb{E}_M U_i$ $Q=\operatorname{killed}$ Markov process generator

Reaction-diffusion-convection equation

Effect of Filters in (x, y, θ)

Nonlinear CIRF PDE filter: Noise Result

(Result is function of (x, y, θ) . Integrated over θ for display.)

Pick Up Sticks

Original (No corruption) With Blur and Noise

Thresholding of Filter Output

Canny:

$$\sigma = 1$$

$$\sigma = 1$$
 $\sigma = 1.5$ $\sigma = 2$

$$\sigma = 2$$

Finding a Ship's Wake

Finding a Surgical Guide Wire

Original

Direction CIRF

 θ :

Curvature CIRF

Filtering with Curvature

Filtering an Euler Spiral

Prostate Enhancement

Original

Edges before

Edges after cubic CIRF filter

Conclusions

- Differential Geometry: Stochastic Model of Contour Curvature
- Inference: Posterior Mean Filter using nonlinear PDEs
- Curve Indicator Random Field as:
 - Sketch (Ideal Edge Map)
 - Abstraction for Eliminating Curve Parameterization